Oklahoma City Air Logistics Complex

Brig Gen Mark K. Johnson
OC-ALC/CC
Oklahoma’s Largest Single-Site Employer

$1.35B Annual Payroll

31,770 Indirect Jobs

$3.4B Economic Impact

31,770 Indirect Jobs Valued at $1.44B
Oklahoma City Air Logistics Complex

5 Maintenance Groups

18 Squadrons

MAINTENANCE, REPAIR, AND OVERHAUL FOR THE E-3, KC-135, B-52, B-1, C-130, KC-10, AND THE NAVY’S E-6 AIRCRAFT

ONLY ALC THAT PERFORMS DEPOT-LEVEL ENGINE MAINTENANCE

MAINTAINS AIRCRAFT AND ENGINE COMPONENTS

DEVELOPS AND MAINTAINS THE SOFTWARE WHICH KEEPS OUR WEAPON SYSTEMS EFFECTIVE AND SURVIVABLE

The Air Force’s Largest ALC!
Oklahoma City Air Logistics Complex

- 60 Facilities
- Industrial Sq Ft
 - 8.1M Sq Ft
 - Bldg. 3001 1.8M Sq Ft
 - Bldg. 9001 2.8M Sq Ft
- The OC-ALC Industrial Area Can Fit:
 - 3.5 AT&T (Jerry World) Stadiums
 - 4.5 Devon Towers
 - 13.8 Chesapeake Arenas
OC-ALC Workforce

USAF’s Largest ALC

Currently 9,189 Civilian & Military

FY11: 8.3M hours
FY12: 8.2M hours
FY13: 7.2M hours
FY14: 7.5M hours
FY15: 7.9M hours
FY16 (planned): 8.6M hours
OC-ALC Organizations and Enterprise Partners

Aircraft

Software

Commodities

Propulsion

Maintenance

Staff

Business Operations
Financial Management
Supply Chain Operations
Aerospace Sustainment
Engineering
Quality
Safety

Enterprise Partners

448th Supply Chain Management
AFGE Local 916
AF Life Cycle Management Center
Defense Logistics Agency
Local Chambers of Commerce
72nd Air Base Wing
Private Industry Suppliers and Partners
Current Air Force Reality

Notional Projected Lifetime

- **F-15**: 2021+ Years
- **ICBM Minuteman-III (LGM-30G)**: 2030+ Years
- **C-130**: 2030+ Years
- **KC-135**: 2040+ Years
- **B-52**: 2040+ Years

Base Model Program Start

Base Model IOC

Planned Phase Out (Last Model)
MRO Technology insertion
Aging aircraft issues are pervasive across multiple weapon systems. Aircraft are flying beyond their initial planned expectancy are presenting structural issues such as cracks and corrosion requiring major repairs. Many of these repairs were not considered in the original design and supportability planning of the platform, and thus do not have resources readily available to put the aircraft back in service. Examples include trunnions, longerons, aft terminal fittings, major skin panels, wing spar cracks and corrosion. Parts obsolescence for major components and their associated hardware procurement also causes delays in PDM production flow.

- Help us maximize emerging crack and corrosion detection technology (i.e NDI tools) with applicable repair guidance.

- Help us balance technical refresh requirements with financial constraints.
Synching Operations and Supply Chain for max performance

• Help us balance the use of buffer (safety) stocks with "just in time“ inventory strategies

• Help us synchronize parts delivery from commercial vendors to aircraft heavy maintenance lines utilizing Critical Chain Project Management “gated” flow techniques

• Help us maximize the shelf life of hazardous MRO chemicals from production to end use of the chemical, and avoid unnecessary destruction of the product
Pain Points

Software and Technical Data Rights:
• Help us strike a balance between protecting commercial intellectual property rights and providing the Air Force management rights of both proprietary software and technical data rights to perform Air Force owned software sustainment

Additive Manufacturing Standards:
• Help us incentivize and encourage greater use of open sourcing for material usage and material characterization data as a way for the wider community to begin setting industry-wide standards and build upon for Additive Manufacturing growth and capability development.

• Help us build fast track design reviews and configuration control processes for replacement of legacy manufactured parts with new additive manufactured designs and final products.